Australian Government
Department of Defence
Defence Science and
Technology Organisation

Z Support in the HIVE Mathematical Toolkit
Brendan Mahony, Jim McCarthy, Linh Vu, Kylie Williams

Command, Control, Communications and Intelligence Division

Defence Science and Technology Organisation

DSTO-TR-2272

ABSTRACT

The HiVE project is an ambitious research programme aimed at providing DSTO and the
Australian Defence Department with the world’s most advanced assurance tools. A key part
of this is the provision of advanced high assurance analysis tools in the form of the HIVE
Modeller component.

Formal specification and system modelling activities in the HTVE Modeller are supported
through an Isabelle/HOL implementation of the HIVE Mathematical Toolkit. This report
describes support for the Z Mathematical Toolkit within the HrVeE Mathematical Toolkit.

APPROVED FOR PUBLIC RELEASE

DSTO-TR-2272

Published by

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: (08) 8259 5555
Facsimile: (08) 8259 6567

© Commonwealth of Australia 2009
AR No. AR-014-433
March, 2009

APPROVED FOR PUBLIC RELEASE

ii

DSTO-TR-2272

Authors

Dr Brendan Mahony

Defence Science and Technology Organisation

Dr Mahony was admitted as a PhD by the University of Queensland
in 1991. After post-doctoral research in high-assurance real-time sys-
tems, he joined the DSTO in 1995. With DSTO he has continued his
research into high-assurance design methods and has guided the de-
velopment of the high-assurance tools DOVE and the HiVE.

Jim McCarthy

Defence Science and Technology Organisation

Jim came to the Defence Science and Technology Organisation in
1998 via a career in theoretical/mathematical physics dating back
to his Ph.D. from Rockefeller University in 1985. He is currently
working to develop high assurance methods and tools, and to model
specific (typically infosec) critical systems.

Linh Vu

Defence Sciene and Technology Organisation

Linh Vu has a Bachelor of Science (Mathematical & Computer Sci-
ences), and a Bachelor of Engineering (Computer Systems) from the
University of Adelaide. She currently dreams in various program-
ming languages and natural languages in her sleep, and hopes to be a
future user of the HiVE.

iii

DSTO-TR-2272

iv

Ms Kylie Williams

Defence Science and Technology Organisation

Ms Williams received a BCSc in 2000 and a BSc with Honours
in Pure Mathematics and Computer Science from the University of
Adelaide in 2001. Ms Williams has been with DSTO since 2005 and
is currently working with the High Assurance Systems Cell.

Chapter 1 Introduction
1.1 The Z Toolkit
1.2 Isabelle/HOL in brief

Chapter 2 The Z Expression Language

2.1 Z Expressions as HOL Terms . . .
22 Predicates
2.3 Expressions

Chapter 3 The Z Mathematical Toolkit
3.1 Modelling issues in Isabelle/HOL
3.2 Sets

33 Relations
34 Functions
3.5 Numbers and finiteness
3.6 Sequences
3.7 Bags
References

DSTO-TR-2272

Contents

10

19
19
21
27
37
39
46
55

59

DSTO-TR-2272

Chapter 1

Introduction

1.1 The Z Toolkit

The Z specification language [2] is widely known and well respected in the formal methods community.
Central to the utility of Z is the provision of a standard Mathematical Toolkit for modelling and explaining
common problems in Computer Science. So as to maximise accessiblity for this Z community, the HIVE
project has undertaken the formalisation of a super-set of the Z Mathematical Toolkit in the Isabelle/HOL
theorem proving environment.

Although the Mathematical Toolkit is canonically defined in the ISO Z Standard [2], significant com-
munities exist that observe the definitions provided by Hayes [1] and Spivey [5]. In order to provide
the widest possible support to the Z community, the HT'VE Mathematical Toolkit includes coverage of all
three sources.

This paper describes the Z compatibility features of the HIVE Mathematical Toolkit. Its intended audi-
ence is primarily the Z practitioner wishing to make use of the HI'VE Mathematical Toolkit with minimal
knowledge of the underlying Isabelle environment. A more complete and Isabelle-oriented development
of the HIVE Mathematical Toolkit is is given in a separate paper [3].

The main body of the paper is devoted to discussing the HiVE approach to providing Z Mathematical
Toolkit support in the Isabelle/HOL environment. The appendices consist of a series of reference pages,
in the style of Spivey [5], describing the supported features of the Z Mathematical Toolkit.

1.2 Isabelle/HOL in brief

Isabelle/HOL [4] provides a A-calculus based modelling and reasoning environment, primarily aimed at
those familiar with the concepts and notations of Functional Programming.

The basic term constructors of Isabelle/HOL are

e free variables! (eg. X, y,...)

e constants (eg. (op =), {},...)

'For technical reasons there is a second class of logical variables, but we ignore this complication here.

DSTO-TR-2272

e functional abstraction (eg. (% x. x = y)?)
o function application (eg. fxy, (% x.x=y)4,...))

Isabelle/HOL offers basic support for higher-order modelling and reasoning. Firstly, functions are first
class objects so that any term, including free and bound variables, may be of function type. Secondly,
Isabelle/HOL supports free type variables, allowing the definition of type generic terms. Thirdly, Is-
abelle/HOL supports type classes (types of types) for restricting the range of type variables to types with
common properties (eg. those with well-defined orders). Isabelle/HOL lacks support for more advanced
higher-order concepts such as type constructors as first class objects, term-dependent types, or existential

types.
The type constructors of Isabelle/HOL are

e free type variables® (eg @, 3, ...)
e class-constrained variables (eg. (a::order), (a::{order, plus}), ...)
e type constructions (eg. nat, (a, 8)fun, a set, ...)

By convention, modelling in Isabelle/HOL proceeds in a naive declarative style: constants are declared
and defined in terms of existing constants, then lemmas and theorems about them are proved. For exam-
ple:
consts

my_identity :: (@, @) fun

defs
my_identity_def: my_identity == (% X. X)

lemma
my_identity x = X
by (simp add: my-identity_def)

Declared constants may also be provided with sophisticated mathematical presentations using the syntax
command.

syntax (xsymbols)
my_identity :: (@,) fun (1 _[1000] 999)

lemma
LX) =X
by (simp add: my-identity_def)

Here the token xsymbols identifies the print mode for the declared syntax and controls when the Isabelle
system uses this syntax in its output. The actual syntax is declared at the right end of the declaration:
the _ character is the placeholder for the operator argument; the [1000] parameter declares the argument
priority; and the 999 parameter declares the result priority.

2We adopt the basic ascii syntax for HOL throughout, so as to reduce confusion with similar Z notation
3 Again we ignore the complication of logical type variables.

DSTO-TR-2272

Chapter 2

The Z Expression Language

2.1 Z Expressions as HOL Terms

In modelling the Z expression language, we are faced with the usual questions of deep versus shallow
embeddings and how deep to go. We have little interest in being able to reason about the Z expression
language as an entity and considerable interest in being able to augment it with the modelling capabilities
of Isabelle/HOL. Therefore a full deep embedding is undesirable. In fact we see considerable benefits in
making the model as shallow as possible, including actually adopting existing HOL features where the
corresponding Z feature is similar in intent.

The Z expression language is split strongly between predicates and (non-predicate) expressions.

The predicate laguage is essentially identical in intent to the HOL boolean type and its associated algebra.
We simply replace the predicate language with the terms of the boolean type. Similarly, we identify the
expression language with the terms of the respective HOL types.

As noted above, HOL provides implementations of all the basic Z type constructors: sets, cross products,
numbers, sequences, and bags.

For sets and cross products, we see no practical distinction between HOL and Z, so we simply adopt the
HOL model for Z.

For sequences (called lists in HOL) and bags (multisets in HOL) the differences are of a fundamental
nature. In particular, Z sequences and bags are graphs and users often make use of graph operators
in dealing with them. Consequently, we felt it imperative to provide first-class Z implementations of
sequences and bags.

In the case of numbers, the correct path was not so clear cut. HOL provides distinct types of naturals,
integers and reals, whereas Z provides only the abstract type of arithos, with naturals, integers and
reals (if adopted) as subsets of arithos. The Z approach offers some convenience in avoiding the use of
type coercions, but providing a separate implementation of arithmetic would be prohibitively expensive.
Fortunately, the majority of HOL’s development of arithmetic is type generic in nature and we are readily
able to introduce the arithos type, while retaining the extensive HOL development. Currently, this type
is instantiated to the reals, but a larger arithmetic domain could readily be adopted.

Most of this machinery of HOL is familar to the Z practioner, but some of the syntactic sugar is not and is
likely to be annoying. For example, the standard binder separator is the weak and easily missed fullstop

DSTO-TR-2272

character, eg. (% x. f x) rather than (A x e f x). In order to improve readibility for the Z practioner, we
introduce an Isabelle print mode zed with associated Z-ified syntactic operators that support the basic
syntax of Z.

Presenting the definition of this zed syntax to the reader familiar with Z presents something of a difficulty.
The Isabelle mechanisms for decribing syntax are very powerful, but not really very accessible, even for
the Isabelle specialist. Besides, while it is easy to quote the text of theorems in general and definitions
in particular, the Isabelle tool doesn’t offer any satisfactory mechanism for automatically quoting the
text of a constant or syntax declarations. Given that we are forced to some form of paraphrase of the
declarations, we adopt a convention of presenting them in the form of term definitions. Such mock
declarations are at least easily comprehended, if not entirely satisfactory in the formal sense.

The syntax and constants required to support the basic Z expression language are presented in the fol-
lowing sections in this fashion.

DSTO-TR-2272

2.2 Predicates

This section contains descriptions of the basic predicate operators:

=, € Equality, set membership (p. 6)
true, false Boolean values (p. 7)

-, A, V, =, & Propositional connectives (p. 8)
v,3d,d, Quantifiers (p. 9)

DSTO-TR-2272

Name

= - Equality
€ - Set membership

Definition

X=y==X=Yy
xeX==x:X

Description

Equality and set membership are boolean-valued binary operators and form part of the HOL term algebra.

Laws
X=X (refl)
X=y =>y=X (Z_sym)
X=yAy=zZ =>Xx=2Z (Z_trans)
S=Teo(xexceSoxeT) (Z_seq_eq_def)
x=yo (¥ SexeSoyel) (Z_member_congruence)

Name

true - Truth
false - Falsity

Definition

true == True
false == False

Description

The predicates true, false are equated to the corresponding boolean operators.

Laws

false # true

(P o true) = R) A((P & false) > R) =R

false = P
P = true

DSTO-TR-2272

(False_not_True)

(Z_bool_cases)
(Z_FalseE)
(Z_Truel)

DSTO-TR-2272

Name
- - Negation
A - Conjunction
vV - Disjunction
= - Implication
< - Equivalence
Definition
- A == " A
AANB==A&B
AVB==A|B

A=B==A-—>B
AeB==A=B

Description

The Z predicate connectives are equated to the corresponding HOL operators.

Laws
(P = false) = =P (Z_notl)
P=>Q=PAQ (Z_conjI)
P=>PVQAQ@=PVQ) (Z_disjI)
P=>QA(Q=P) =(PsQ) (Z_iffl)

DSTO-TR-2272

Name
¥ - Universal quantifier
1 - Existential quantifier
d; - Unique quantifier
Definition

Vx|QxePx)==(x.Qx—-——>Px)
Ax|QxePx)==(?x.Qx & Px)
@i x|QxePx)==(?'x.Qx & Px)

Description

We model the boolean quantifiers as higher-order operators, taking a boolean valued operator and return-
ing a boolean value. This is a significant difference from the Z approach of schema-text local variables,
but gives the same high level reasoning rules and allows full utilisation of Isabelle’s efficient treatment
of bound variables.

Laws
(VW xePx)o—-(dxe—-PXx) (all_conv)
(AxePx)eo - (Y xe—-Px) (ex_conv)
Vxex=v=Px)oPv (one_point_all)
dAxex=vAPx)o Pv (one_point_ex)
JixePx)o(dxePxA(N yoePy = y=Xx)) (Z_ex1_def)

DSTO-TR-2272

10

2.3 Expressions

This section contains descriptions of the basic expression operators:

A

Tuple and set extension (p. 11)

Power set and cartesian product (p. 12)

Set comprehension (p. 13)
Lambda-expression and unique choice (p. 14)
Let-expression (p. 15)

(Graph) Function application (p. 16)
Condition expression (p. 17)

DSTO-TR-2272

Name

(...) - Tuple

{...} - Setextension
Notation
We write (xg, X1, . .., X,) for the tuple Pair x¢ (x1, ... X;).
We write {xq, X1, ..., X,} for the set insert xg {x1, ... X,}.
Description

Tuple and set extension are syntactic sugar for the Isabelle/HOL Pair and insert operators respectively.

Laws
(a,b)=(a’,b’yeoa=a’Ab=0>b’ (Pair_eq)
ac bpjUAea=bVvacA (insert_iff)

11

DSTO-TR-2272

Name
P - Power set
X - Cartesian product
Definition
P X == Pow X

XXY=X<sx>X

Description

Power set and cross product are modelled in Isabelle/HOL as set operators.

Laws

XXY={xy|lxeXAyeYe(x,y)} (Z_prod_def)

12

DSTO-TR-2272

Name

{|e} - Setcomprehension

Definition

{x|Pxetx}=={tx]|x.Px}

Description

Set comprehension is modelled in Isabelle/HOL as a function from boolean operators to sets. This pro-
vides the essential properties of the Z set comprehension, though as usual the bound variable modelling
differs.

Laws

ve{x|Qxeotx}o (A xeQxAy=tx) (Z_coll_mem)

13

DSTO-TR-2272

Name
A - Lambda-expression
u - Unique choice
Definition

Ax|Qxetx)=={x|Qxe(xtXx)}
(wx|Qxetx)==The (% y.y:{tx|x.Qx})

Description

The (graph) lambda-expression is not modelled in Isabelle/HOL. We define it as a graph-valued operator
with two arguments, the domain term and the result term.

The unique choice operator is modelled in Isabelle/HOL.

Laws
(u—»v)e(hx|bxetx)obuAv=tu (Z_glambda_mem)
be =>(Ax|bxetx)e=te (Z_glambda_beta)
dom(Ax|bxetx)={x|bx} (glambda_dom)
ran(Ax|bxetx)={x|bxetx} (glambda_ran)
Pa=(xePx >x=a) >Wux|Px)=a (Z_collect_the_equality)

14

DSTO-TR-2272

Name

let - Local definition

Definition

letx=tefxend==(%x.fx)t

Description

The let expression is modelled in Isabelle as an operator that acts on a term and a function.

15

DSTO-TR-2272

Name

- (Graph) Function application

Definition

f-x==The (% y.(x,y)€f)

Description

(Graph) Function application is not modelled in Isabelle/HOL. We define it as an operator with two
arguments, the graph and the argument.

Laws
Jiye(x—y)ef) > x—rfx)ef (Z_single_val_appl)
xPpyef=>tx=y (Z_pfun_beta)
xedomf=>xHfx)ef (Z_pfun_appl)
xedomf =(x—yefey=1fx) (Z_pfun_unique)

16

DSTO-TR-2272
Name

if then - Conditional expression

Definition

if bthen uelse v fi == if b then u else v

Description

The condition expression is defined in Isabelle/HOL as a three-place operator.

Laws
P =if P thenE; else E;fi=E; (Z_true_if)
- P =if P thenE; else E,fi=E, (Z_false_if)
if P thenE else Efi=E (Z_idem_if)

17

DSTO-TR-2272

18

DSTO-TR-2272

Chapter 3

The Z Mathematical Toolkit

3.1 Modelling issues in Isabelle/HOL

The primary issue in modelling the Z Mathematical Toolkit in Isabelle/HOL lies in Z’s use of sets of
pairs to model all functions. HOL provides a built-in type construction of total functions that is distinct
from the graph type. For the purposes of clarity, we refer to these HOL functions as operators and Z
functions as graphs.

Clearly the graph fills such a central role in Z and provides such a flexible mechanism for finite data
structures that any implementation of the Z Toolkit must provide full first-class support for graphs. On the
other hand, for many algebraic primitives, the operator offers significant advantages, reducing syntactic
baggage and eliminating the need to reason about definedness. Besides, rejecting the use of operators
completely would deny access to the large suite of modelling tools defined in HOL. It is clear that the
H1VE user will be best suited by having access to both worlds.

Having decided to proceed with full support for both function models in the HiVE, one is left with
the tricky decision of how much to make use of operators in supporting the Z Toolkit. A totally pure
approach of not allowing operator models for any Z constructs would be expensive and brittle. For
example, requiring a complete re-implementation of arithmetic! In any case, the use of graphs to model
what are essentially algebraic operators is often awkward and unsatisfying in the Z Standard [2]. Our
approach has been to use the operator model where a construct is basically an algebraic operator and the
graph model where it is to be used primarily for user-level modelling.

In Z, the only mechanism for genericity is the given type. Again this is often awkward, as seen in the
convention of leaving out generic parameters in most cases. Generally, HOL-style type generics offer a
better solution to type abstraction. Our approach is to use type generics wherever possible, adopting set
generics only where the value of the set parameter actually changes the meaning of the object. Where
we use set generics, we model it as a set-valued argument to the constant.

This leads nicely to discussion of another fundamental question. Whether to introduce Z constructs as
HOL constants or else to adopt an explicit model of the environment in the semantics presented in the Z
Standard [2]. Thus far we can see no compelling argument for pursuing the latter option and a number
of barriers, such as developing an appropriate data type for modelling such an environment. All the
standard elements of the Z Toolkit are introduced as constants as described in Section 1.2.

19

DSTO-TR-2272

20

Finally, as discussed in Section 2.1, we note that HOL provides implementations of all the basic Z type
constructors, sets, cross products, numbers, sequences, and bags.

For sets and cross products, we see no fundamental distinction between HOL and Z, so we simply adopt
the HOL model for Z.

For sequences (called lists in HOL) and bags (multisets in HOL) the differences are of a fundamental
nature. In particular, Z sequences and bags are graphs and users often make use of graph operators
in dealing with them. Consequently, we felt it imperative to provide first-class Z implementations of
sequences and bags.

In the case of numbers, the correct path was not so clear cut. HOL provides distinct types of naturals,
integers and reals, whereas Z provides only the abstract type of arithos, with naturals, integers and
reals (if adopted) as subsets of arithos. The Z approach offers some convenience in avoiding the use
type coercions, but providing a separate implementation of arithmetic would be prohibitively expensive.
Fortunately, the majority of HOL’s development of arithmetic is type generic in nature and we were
readily able to define the arithos type, while retaining the extensive HOL development.

DSTO-TR-2272

3.2 Sets

- Inequality
¢ - Non-membership

Definition

XEy=-(x=Yy) (Z_neq_def)
x¢gS=-(xe€l) (Z_nin_def)

Description

The negations of equality and set membership [5, p 89][2, p 95] are already defined as
syntactic operators in HOL. We simply make use of these existing, type-generic operators.

Laws

Xty Dy #£X (Z_neq_commute)

21

DSTO-TR-2272

22

Name
@ - Empty set
U - Universal set
€ - Subset relation
C - Proper subset relation
P; - Non-empty subsets
Definition

@ ={ x| false }
U={x]|true}
SCT=VxexeS =xeT
ScT=SCTAS+#T
PIX={S|SePXAS+0}

Description

(Z_empty_def)
(Z_UNIV_def)
(Z_subseteq_def)
(Z_subset_def)
(Z_Powl1_def)

The empty set and subset relations [5, p 90][2, p 95] are defined as operators in HOL. We
make use of the existing, type-generic operators, with appropriate Z-style syntax.

The non-empty power set [5, p 90][2, p 96] we define as an operator on sets.

Laws

X¢Qo

SCToeSePT

ScsS

-(ScS)
SCTATCSeS=T
- (ScTATCS)
SCTATCV=ScCcV
ScTATcV=ScV
@CS

gCSeS+0

PP X=0X=0
X+ XeP X

(Z_notin_empty)
(Z_subset_Pow)
(Z_subset_refl)
(Z_psubset_not_refl)
(Z_subset_antisym)
(Z_psubset_chained)
(Z_subset_trans)
(Z_psubset_trans)
(Z_empty_subset)
(Z_empty_psubset)
(Z_Pow1_empty)
(Z_nempty_Pow])

DSTO-TR-2272

U - Setunion
N - Setintersection
\ - Set difference

Definition

SNT={x|xeSAxeT} (Z_inter_def)
SuT={x|xeSvxeT} (Z_union_def)
S\T={x|xeSAx¢T} (Z_set_diff_def)

Description

Set union, intersection, and difference [5, p 91][2, p 97] are already defined in HOL. We
make use of the existing, type-generic operators, with appropriate Z-style syntax. The sym-
metric set difference operator [2, p 97] is not already defined in HOL. We define it as a

binary set operator.

Laws

SUS=Suo=SNS=S\o=S
SNe=S\S=0\S=0
SUT=TUS

SNT=TNS
SU(TUV)=SUTUV
SA(TNV)=SNTNV
SUTNV=ESUT)N(SUYV)
SN(TUV)=SNTUSNV
SNTUS\T)=S
SU(T\V)=SUT\(V\S)
S\T)NT=0
SAN(T\V)=SNT\V
S\(T\V)=(S\T)uSnV
SUT\V=(S\V)U(T\V)
S\T\V=S\TUV
S\TNV=(S\T)U(S\V)

(Z_union_inter_diff_idem)
(Z_inter_diff_empty)
(Z_union_comm)
(Z_inter_comm)
(Z_union_assoc)

(Z_inter_assoc)
(Z_union_dist)
(Z_inter_dist)
(Z_partition)
(Z_union_diff)

(Z_diff_disjoint)

(Z_inter_diff)
(Z_diff _diff1)
(Z_diff_union)
(Z_dift_diff2)
(Z_dift_inter)

23

DSTO-TR-2272

Name
U - Generalised union
(N - Generalised intersection
Definition
UA={x|1SeScAAxeS} (Z_Union_def)
NA={x|YV SeScA =x¢e8§} (Z_Inter_def)
Description

Generalised union and intersection [5, p 92][2, p 97] are defined as operators in HOL. We
make use of the existing, type-generic operators, with appropriate Z-style syntax. We also
allow the dropping of the set brackets when applied to set comprehensions, i.e. (| J x| Q x
etx)and () x| Qx e tXx).

Laws
UAUB)=UAUUB (Z_Union_union_dist)
N(AUB)=(YANB (Z_Inter_union_dist)
Uo =0 (Z_Union_empty)
No=U (Z_Inter_empty)
SNUA=(T|TeAeSNT) (Z_inter_Union_dist)
UANS=UTITecAeT\S) (Z_Union_diff_dist)
S\NA=UT|TcAeS\T) (Z_dift_Inter_dist)
A+2 > NA\NS=("T|TecAeT\S) (Z_Inter_dift_dist)
ACB =>|JACUB (Z_Union_mono))
ACB =NBCNA (Z_Inter_antimono)

24

DSTO-TR-2272

Name

fst,snd - Projection functions for ordered pairs

Definition

fst (x, y) = x (Z_tst_def)
snd (x,y)=y (Z_snd_def)

Description

The first and second operators [5, p 93][2, p 98] are defined in HOL. These are not strictly
compatible with those defined in the Z Standard, since the Z operators act on bindings rather
than tuples, which are subsumed by the binding structure in Z. Nevertheless we find it con-

venient to make use of the HOL operators. As noted elsewhere, bindings are a difficult
structure to model in HOL.

Laws

(fst p, snd p) = p (Z_tuple_cong)

25

DSTO-TR-2272

26

Order properties of set operations

ScSuT

TCSUT
SCWATCW=SUTCW
SeA=SCcUA
(VSeScA=SCcW)=JACW
SNTcS

SNTCT

WCSAWCT =>WwWcSNT
SeA=>NACS
(VSeScA=>WcCS) =>WcCNA
S\TcS

WCSAWNT=0 =>WCS\T

(union_ubl)
(union_ub2)
(union_Ileast)
(Union_ub)
(Union_Ieast)
(inter_Ib1)
(inter_1b2)
(inter_greatest)
(Z_Inter_Ib)
(Z_Inter_greatest)
(diff_Ib)
(diff_greatest)

DSTO-TR-2272

3.3 Relations

Name
< - Binary relation graphs
— - Maplet
Definition
XoY=P(XXY) (rel_def)
X y=(x,y) (Z_maplet_def)
Description

Isabelle/HOL allows us to adopt the usual Z model of relations as sets of pairs. We call this
model the graph approach. Another approach would be to model relations as binary boolean-
valued operators. Isabelle/HOL makes use of both models in its development, making it
necessary to convert between the two at times. We write op r for the operator generated by
the graph r and grf s for the graph generated by the operator s.

Following Spivey [5], we adopt syntax for infix relation application (for example writing a
R b for (a = b) € R) and relational chaining (for example writing a, b€ X C Y fora € X
AbeXAXCY).

HOL provides a built-in model for functions (value abstractions), embodied by the type
constructor fun and the A-constructor. In the following we refer to this model as the operator
model of functions.

The single-valued graphs provide a convenient (and widely used) mathematical model of
functions. This is especially so when partial or finite functions are of particular interest, as
is often the case in program specification. A graph is a set of pairs describing the relationship
between function argument and function result.

27

DSTO-TR-2272

28

Name
dom - Domain
ran - Range
Definition

domR={xy|xRyex}
ranR={xy|xRyey]}

Description

Domain and range operators [5, p 96][2, p 98] are already defined.

Laws

xedomre (dyeyeYAxry)
yeranreo (dxexe X AXry)
dom {(x,y)}UR = {x} UdomR
ran {(X,y)}UR = {y}UranR

dom (R; U Ry) =dom R; Udom R,
ran (R; UR») =ran Ry Uran R,
dom (R; N R,) Cdom R; Ndom R,
ran (R;{ N Ry) Cran Ry Nran R,
dom @ =@

ran @ = 9@

(Z_dom_def)
(Z_ran_def)

(Z_in_domD)
(Z_in_ranD)
(Z_rel_insert_dom)
(Z_rel_insert_ran)
(Z_rel_union_dom)
(Z_rel_union_ran)
(Z_rel_inter_dom)
(Z_rel_inter_ran)
(Z_rel_empty_dom)
(Z_rel_empty_ran)

Name

id - Identity relation

s - Relational composition

o - Backward relational composition
Definition

dX={x|xeXe(x,x)}
Ron{xyz|ny/\yEzoxn—>z}
Q3R=RoQ

Description

DSTO-TR-2272

(rel_id_def)
(Z_comp_deft)
(Z_fcomp_def)

Relational identity [5, p 97][2, p 98] and (backward) composition [5, p 97][2, p 99] are
already defined in HOL. We introduce forward composition [5, p 97][2, p 99] by identifying

it with backward composition, but with the arguments reversed.

Laws

xPpx)edXex=x'eX
(xP2)eP5QedyexPyAyQ2)
(x> 2)ePo Qe dd yony/\y_Bz)
PsQsR=P3Q3sR
id(dom P) s P =P

Psid (ran P) = P
idVgidW=id (VN W)

(Z_rel_id_mem)
(Z_rel_fcomp_mem)
(Z_rel_comp_mem)
(Z_rel_fcomp_assoc)
(Z_rel_lident”)
(Z_rel_rident”)
(Z_rel_id_fcomp)

29

DSTO-TR-2272

Name
< - Domain restriction
> - Range restriction
Definition
S<R={xy|xeSAxRyexm—y} (Z_dres_deft)
ReT={xy|lyeTAXxXRyoxm—y} (Z_rres_def)
Description

Domain and range restrictions [5, p 98][2, p 99] are not defined in HOL. In the Z standard,
they are defined in a set generic manner, but they do not vary in value according to the carrier
set, so we define them in a type generic manner.

Laws
S<«R=idSgR=SXYNR (Z_dres_id_inter)
R>T=R3idT=RnNXXT (Z_rres_id_inter)
dom (U <R)=UNdomR (Z_dres_dom)
ran(R>T)=ranRNT (Z_rres_ran)
S<RCR (Z_dres_sub_self)
R>TCR (Z_rres_sub_self)
U<RrV=U<x(R>YV) (Z_dr_res_assoc)
U<«VaR=(UnNV)«R (Z_dres_dist)
ReUr>V=R>(UNYV) (Z_rres_dist)

30

DSTO-TR-2272

Name
< - Domain anti-restriction
> - Range anti-restriction
Definition
S<R={xy|x¢SAXxRyexm—>y} (Z_dsub_def)
ReT={xy|ly¢TAXRyoxm—y} (Z_rsub_def)
Description

As above, domain and range antirestrictions [5, p 99][2, p 99,100] are not a standard part
of HOL. In the Z standard, they are defined in a set generic manner, but they do not vary in
value according to the carrier set, so we define them in a type generic manner.

Laws
U<R=U\U)<R (Z_dsub_id_char)
R V=R U\YV) (Z_rsub_id_char)
U<RUU<R=R (Z_dpart_rel)
R>TURbBT=R (Z_rpart_rel)

31

DSTO-TR-2272

32

Name

- Relational inverse

Definition

R ={xy|xRyeoym—x} (Z_inverse_def)

Description

The relational inverse [5, p 100][2, p 100] is already defined in HOL.

Laws

x—y)eR"o(y—x)eR (Z_inverse_mem)
(R™)"=R (Z_inverse_idem)
(RoS)"=S8"0oR~ (Z_inverse_rel_comp)
dX)"=id X (Z_inverse_id)
dom (R~) =ran R (Z_inverse_dom)
ran (R™) = dom R (Z_inverse_ran)
id (dom R)C R s R~ (Z_inverse_Igalois)
id(ranR)C R~ 3R (Z_inverse_rgalois)

DSTO-TR-2272
Name

(-) - Relational image

Definition

R(S)={xy|xeSAxRyey} (Z_Image_def)

Description

Again relational image [5, p 101][2, p 100] is a standard part of HOL.

Laws
veR(Uye(dxexcUAXRY) (Z_Image_diff)
R(U) =ran (U <« R) (Z_Image_dres)
dom (S § R) = (S7)(dom R) (Z_inv_Image_dom _rel)
ran (S § R) = R(ran S) (Z_Image_ran_rel)
R(U U V) = R(U) U R(V) (Z_Image_union)
R(U N V) CRU) N R(V) (Z_Image_inter)
R(dom R) =ran R (Z_Image_dom)
dom R = fst(R) (Z_dom_Image)
ran R = snd(R) (Z_ran_Image)

33

DSTO-TR-2272

Name

® - Overriding

Definition

Q®dR=domR<QUR (Z_rel_oride_def)

Description

Relational overriding [5, p 102][2, p 100] is not a standard part of HOL. As its value does
not vary with carrier set, we make a type generic definition.

Laws

R®R =R (Z_rel_oride_idem)
PeQ)®oR=PadQa®R (Z_rel_oride_assoc)
2®@R=R&2=R (Z_rel_oride_id)
dom (Q ® R) = dom Q Udom R (Z_rel_oride_dom_dist)
Q®R=QUR (Z_rel_oride_disj)
V<a(@Q®R)=VaQa® V<R (Z_dres_rel_oride_dist)
Q®R)>VCQrVOR>V (Z_rres_rel_oride_dist)
If f and g are functions

(g®f)x=gx (Z_rel_oride_beta2)
(gof)x=1fx (Z_rel_oride_betal)

34

DSTO-TR-2272

Name
_t - Transitive closure
_* - Reflexive-transitive closure
Definition
R*=(NQ|QeXeoXARCQAQ:0Q0CQ (Z_trancl_def)
R*=(NQIQeXeoXAdXCQARCQAQ:QCQ) (Z_zrtrancl_def)
Description

The reflexive and transitive closure operators [5, p 103][2, p 100,101] are treated in the
standard HOL distribution, but unfortunately do not accomodate the notion of carrier set for
the relation as expected by Z.

Laws
R CR* (Z_trancl_inc)
R* 3 R*CR” (Z_trancl_tcomp_dist)
QeXeoXAQ:QCQARCQ=R'CQ (Z_trancl_subl)
id X C R* (Z_zrtrancl_id)
R CR* (Z_zrtrancl_inc)
R*$R* CR* (Z_zrtrancl_fcomp_dist)
dXCQARCQAQsQCQ =R*CQ (Z_zrtrancl_subl)
R*=R*"UidX =(RUid X)* (Z_zrtrancl_decomp)
R*=R3R*=R*3R (Z_trancl_decomp)
(RH*=R* (Z_trancl_idem)
(R*)* = R* (Z_zrtrancl_idem)
X C(R)X) (Z_zrtrancl_Image)
R((R* X)) € (R*)(X) (Z_rel_zrtrancl_Image)
UCVARV)CV =>RHU)CV (Z_rel_ztrancl_mono)

35

DSTO-TR-2272

Monotonic Operations

HOL provides a basic monotonicity definition, and we expand upon it to provide the following lemmas.

feMoe (M STeSCT =FfSCFT) (mono_set_def)
feMArevargste Mo

2_prod_set_def
(Y STUVeSCTAUCV = fSUCFTV) (mono2_prod_set.def)

feMeo (W STef(SNT)CFSNIET) (mono_set_inf)
feMoeo W STefSUFTCF(SUT)) (mono_set_sup)
feMyArevargsfe M, &

VWV STUVe

hic2_set_def
fFSUT)V=fSVUFTV A (sup-morphic2-set.def)

fS(UuUV)=fSUUFSYV)

U<«(RUS)=U<RuUU=<«S (dsub_union_distI)
SCT=>T<RCS<«R (dsub_mono)
S=("NWTI|fTCT (Ifp_set_det)
fS=S8 (Ifp_set_fold)
VTefTCT=SCT (Ifp_set_induct)

36

DSTO-TR-2272

3.4 Functions

Name
+ - Partial functions
— - Total functions
»» - Partial injections
> - Total injections
-+ - Partial surjections
-» - Total surjections
>» - Bijections
Definition
X+»Y={f|feXoYAN xexedomf =>;ye(x—y)ef))} (Zpartfuns_def)
X->Y={f|feX+HYAdomf=X} (total_funs_def)
X»»Y={f|feX+H»YAeY X} (part_injs_def)
X—»Y=X»YNX->Y (total_injs_det)
X+»Y={f|feX+»YAranf=Y} (part_surjs_def)
X>Y=X»YNX—->Y (total_surjs_def)
X»Y=X»YNX->»Y (bijs_def)
Description

HOL provides a built-in model for functions (value abstractions), embodied by the type
constructor fun and the A-constructor. In the following we refer to this model as the operator
model of functions.

The single-valued graphs provide a convenient (and widely used) mathematical model of
functions. This is especially so when partial or finite functions are of particular interest, as
is often the case in program specification.

In the following we develop a graph model of functions, based on the Z mathematical toolkit
as described by Spivey [5, p 107][2, p 101,102].

Laws
feX+»Yof gf=id(ranf) (Z_pfun_left_inv)
feX»mYoeofeXH»YAfTeY+»X (Z_pinj_f_finv)
feX»YoefeX->YAfreY+»X (Z_tinj_f_finv)
f(S)Nf(T) =f(SNT) (Z_tinj_image_inter)
feX»YefeX->YAffeY—X (Z_bij_tfun_inv_tinj)
f~sf=idY (Z_psurj_left_inv)

37

DSTO-TR-2272

Relational operations on functions

Identity relation is a function

idSeX» X (Z_id_pinj)
idXeX»r» X (Z_id_bij)
feXH»YANgeYH»Z=2g0feXbwZ (Z_comp_in_pfunl)
feX—->YAngeYw»ZAranfCdomg =gofeX—>Z (Z_comp_in_tfunl)
feX»Y=>S8S<afeX»pY (Z_dres_in_pfunl)
feX»Y=>fpTeX»pY (Z_rres_in_pfunl)
feXH»YANgeX»Y=2fFfdgeX+HY (Z_rel_oride_in_pfunl)

Composition and restrictions of injections:

gofeX»»Z (Z_comp_in_pinjI)
feX»»Y=>S<afeX»Y (Z_dres_in_pinjI)
feX»Y=fprTeX»Y (Z_rres_in_pinjI)
feX»»Y=feY»X (Z_pinj_inv_pinj)

Set theoretic operations

feXH»YANgeX+»YAdomfNdomg=0 =fUgeX -+ Y (Zunion_in_pfun)
feXH»YAngeX»Y=>fngeX+Y (Z_inter_in_pfun)
feXmYANgeXm»YfngeX»Y (Z_inter_in_pinj)

Special cases

feXsYANngCf=geX+»Y (Z_subset_in_pfun)
feX»»YAgCf=geXm»Y (Z_subset_in_pinj)

38

DSTO-TR-2272

3.5 Numbers and finiteness

Name
A - Numbers
N - Natural numbers
Z - Integers
+, —, %,div, mod - Arithmetic operations
<, %, 2,> - Numerical comparison
Definition
N=(YN|OeNA(N xexeN =x+ 1€N)) (Z_zNats_def)
Z={z|zeAN@A xexeNA(z=xVz=-X))} (Z_zInts_def)

Other definitions not included for brevity.

Description

The number domain [5, p 108][2, p 103] for Z is an abstract set A, pronounced “arithmos”.
The basic requirements for arithmos is that it must admit an injective, homomorphic embed-
ding of the integers. Isabelle declares homomorphic embeddings of the naturals and integers,
but does not require they be injective. We declare strengthenings of these embeddings and
lift natural number and integer lemmas to these embeddings. We omit some definitions of
the above operators for brevity.

Laws
<0b = <0(amodb) A <(amodb) b (Z_mod_bounds)
b#0 = a=b=x*(adivb)+ amodb (Z_div_mod_reconstr)
b#x0Ac#0 =>c+adiv(cxb)=adivb (Z_div_mod_reduce)

39

DSTO-TR-2272

Name
Ny - Strictly positive integers
succ - Successor function
(a..b) - Numberrange
Definition
Ny =N\ {0}

suicc=(An|neNen+1)
a.b={k|keZAna<k<b}

Description

(zNats1_def)
(Z_zsucc_def)
(Z_zint_range_def)

The non-zero integers [5, p 109][2, p 105] are not defined in HOL. We introduce them as a

subset of arithmos.

The successor [5, p 109][2, p 103] is defined as an the operator in HOL, but there is a strong
assumption in Z that the successor is a graph. Hence we introduce a graph-style successor.

Numeric ranges [5, p 109][2, p 106] are defined in HOL, but we find it more convenient to

introduce a Z specific range.

Laws

succ € N »» N;

VneneN =succn=n+ 1
<mn>=n.m=@

a.a=1{a}

ni..mp € np..my

40

(zsucc_bij)
(Z_zsucc_beta)
(Z_zint_range_empty)
(zint_range_singleton)
(zint_range_mono)

DSTO-TR-2272

Name

R"[X] - Iteration

Definition
R=id X (Z_ziter_zero_def)
R"*1=R s R" (Z_ziter_iter_def)
R k= (R™) (Z_ziter_minus_k_def)
Description

HOL already defines a relational iteration operator [5, p 110][2, p 106], but, as per the
transitive closure operator, it does not take account of a carrier set as the Z operator does nor
is it defined over the full integer space. Thus we are forced to redefine a Z compliant version

of iteration.
Laws
RO=id X (Z_ziter_zero)
R'=R (Z_ziter_one)
R>=R:R (Z_ziter_two)
R'=R~ (Z_ziter_minus_one)
R"*!' =R 3R" (Z_ziter_iter)
R**1=R"¢R (Z_ziter_iter”)
(R™)" =(R™™~ (Z_ziter_converse)
R**™M=R" s R™ (Z_ziter_add_dist)
R™*™M = (R™" (Z_ziter_mult_dist)

Rt = k|<(:pk ANk €Z e RN
R*=(J k|<(0:8) k ANk €Z e R¥)
R:S=S:R = (R3S)F=RFkg Sk

(Z_ziter_ztrancl)
(Z_ziter_zrtrancl)
(Z_fcomp_ziter)

DSTO-TR-2272

Name
F - Finite sets
F, - Non-empty finite sets
#_ - Number of members of a set
Definition
FX={S|SePXA(dneneNAdfefe(l.n)>»S))} (Z_fin_pow_def)
FI X=FX\ {2} (Z_fin_pow1_def)
#S=(un|neNAQ fefe(l.n)>S)) (Z_zcard_def)
Description

We introduce finite subsets and finite non-empty subsets [5, p 111][2, p 97] as set operators.
We define them as restrictions of the existing HOL finite set operator.

Laws
SeFXe(VfefeS>»S =ranf =1S5) (Z_finite_iff)
2eFX (Z_empty_fin_pow)
VSxeSeFXAxeX =>SU{x}eFX (Z_fin_pow_insert)
#HSUT)=#S+#T -#SNT) (Z_zcard_union)
FIX={S|SeEFXA<O#S)} (Z_fin_pow 1 _redef)

42

DSTO-TR-2272

Name

+ - Finite partial functions
» - Finite partial injections

Definition

X#»Y={f|feX+»YAdomfeFX} (Z_finite_part_tuns_def)
XwY=X»YNX»»Y (finite_part_injs)

Description

Finite functions [5, p 112][2, p 102] are those represented by a finite set of maplets.

Laws

X+»Y=X+>YNF(XXY) (Z_finite_part_tun_fpow)

43

DSTO-TR-2272

Name

min, max - Minimum and maximum of a set of numbers

Definition

mn={Sm|SePIZAmeZAmeSA(NN neneS =><mn)eS+— m} (zmin_def)
max={Sm|SePiZAmeZAmeSA(N nencS =>m>n)eS+—»>m} (zmax_def)

Description

The minimum and maximum [5, p 113][2, p 107] of a finite set are defined generally. Such
functions are defined in HOL, but we introduce graph-based versions in support of Z.

Laws
F| Z € dom min (Z_fin_pow1_dom_min)
F; Z € dom max (Z_fin_pow1_dom_max)
PN N dom min =P; N (Z_pow_zmin_powl)
PN Ndommax =F; N (Z_pow_zmax_fpowl)
min-(S U T) = min-{min-S, min-T} (Z_min_union)
max-(S U T) = max-{max-S, max-T} (Z_max_union)
min-(S N T) > min-S (Z_min_inter)
< (max:(S N T)) (max-S) (Z_max_inter)
<ab = min-(a..b) = a A max-(a..b) =b (Z_min_max_zint_range)
(a..b) N (c..d) = max-{a, c}..min-{b, d} (Z_zint_range_inter_min_max)

44

DSTO-TR-2272

Proof by induction

Arithmetic induction provides a method for proving a number of theorems about the natural numbers.

zNats_induct:

[neN;PO; Ame[meN;Pm]+-P(m+)]+ Pn

45

DSTO-TR-2272

3.6 Sequences

Name
seq - Finite sequences
seq - Non-empty finite sequences
iseq - Injective sequences
sinsert - Sequence insertion
O - Empty sequence
Definition
seqX=(Jn|neNe(l.n)— X) (seq_def)
seq X ={s|seseq X A <0 (#s) } (seql_def)
iseq X =seq X N N> X (iseq_def’)
sinsert x s={(1,x)}®{nx|(n,x)ese(n+1,x)} (sinsert_def)
(Y=o (sempty_def)
Notation
We write (xo, X1, ..., X,) for the sequence sinsert xg (X1, ... Xp).
Description

HOL includes an extensive theory of lists, but the Z notion of sequences [5, p 115](2, p
107] modelled as graphs are not part of HOL. We develop a syntax and type constructors
for graph-based sequences; building upon the function and number theories discussed previ-
ously. A basic sequence is a finite graph defined on an initial interval of the natural numbers.
A non-empty sequence has at least one element and an injective sequence has no repeated
elements.

Laws

seqr X =seq X \ {()} (seql_nonempty)

46

Name
- - Concatenation
rev - Reverse
Definition

s t=sU{n|nedomten+#sr tn}
revs=(An|nedomses-(#s—n+ 1))

Description

DSTO-TR-2272

(Z_sconcat_redef)
(Z_srev_def)

Sequence concatenation [5, p 116][2, p 108] adds the elements of one sequence at the end

of another.

Sequence reverse [5, p 116][2, p 108] maintains the elements of its argument, listing them

in the reverse order.

)~
|
»

#H(s T t) =#s + #t
rev()=()

rev (x) = (X)

rev(s t)=revt revs
rev (rev s) = S

(Z_sconcat_assoc)

(Z_sconcat_semptyl)
(Z_sconcat_semptyr)

(Z_sconcat_zcard)
(Z_srev_sempty)
(Z_srev_sunit)
(Z_srev_sconcat)
(Z_srev_srev)

DSTO-TR-2272

Name
head, tail, last, front - Sequence decomposition
Definition
head s = s-1 (Z_shead_def)
tails=(An|ne l.#s—1es(n+ 1)) (Z_stail_def)
fronts=(l.#s—-1)<s (Z_sfront_def)
last s = s-#s (Z_slast_def)
Description

The head, tail, front and last operators [5, p 117][2, p 108,9] are defined as in Spivey.

Laws
head {x) = last {(x) = x (Z_shead_slast_sunit)
tail {(x) = front (x) = () (Z_stail_sfront_sunit)
s#{)Y > head (s " t)=head s A tail (s " t)=tail s "t (Z_shead_stail_sconcat)
t#£{) > last (s " t)=lastt A front (s~ t)=s frontt (Z_slast_sfront_sconcat)
s#{) = (head s) " tail s =s (Z_shead_stail_reconstr)
s#() = fronts {lasts)=s (Z_stront_slast_reconstr)
s # () = head (rev s) = last s A tail (rev s) = rev (front s) (Z_shead_stail_srev_sfront)
s # () = last (rev s) = head s N front (rev s) = rev (tail s) (Z_slast_stront_srev)

48

DSTO-TR-2272

Name
1 - Extraction
I - Filtering
squash - Compaction
Definition
U1 s = squash (U < s) (Z_sxtract_def)
s |V =squash (s> V) (Z_sfilter_def)
squashf ={x|xedomfe#{ijlicdomfA<ix}+ 1 fx} (ssquash_def)
Description

We can create a sequence squash f from a function, by translating its domain using the
bounded_card function. The inverse of this function is used to show monotonicity of the
squash function [5, p 118][2, p 109]. Extraction and filtering [5, p 118][2, p 109] are defined
in the natural way.

Laws
OTV=U1()=() (Z_stilter_sxtract_sempty)
sTtIV=@6IV)Y (V) (Z_sconcat_sfilter)
ramsCVoesV=s (Z_sfilter_ran_redef)
sT@=01s=() (Z_stfilter_empty_sxtract_sempty)
<#H(G T V) (#Hs) (Z_zcard_sfilter)
sTVIW=s(VNnW) (Z_stilter_repeat)

49

DSTO-TR-2272

Name
prefix - Prefix relation
suffix - Suffix relation
in - Segment relation
Definition
sprefixt=3 veveseq X As v=t (Z_prefix_def)
ssuffixt=Jueueseq X Au" s=t (Z_suffix_def)
sint=duve(ueseqXAveseqX)Au s v=t (Z_infix_def)
Description

Prefix, suffix and infix [5, p 119][2, p 109,110] are defined as type generic operators. The
extraction lemmas discussed below are not expressed as in Spivey. All three require the
extra assumption that #s < #t to establish various arithmetic expressions. This must be an
unstated assumption in the definition of suffix, prefix and infix since if s is larger than t it
obviously cannot be a suffix, prefix or infix of t anyway.

The infix extraction lemma requires a complete restatement as compared to the version in
Spivey. The original expression in Spivey is:

sint e (d n|ne{l.#t)es={n.n+#s}t)

which is clearly wrong since #{n..n + #s} > #s.

Laws
sprefixt & s=(1.#s) 1 t (Z_sprefix_sxtract)
ssuffixt o s=#t —#s+ 1.#) 1t (Z_ssuftix_sxtract)
sinteo(dnencO.#t—#sAs=(n+ 1.n+#s)]t) (Z_sinfix_sxtract)
sint e (4 ueuecseq X A ssuffix u A u prefix t) (Z_sinfix_sp)
sint & (3 veveseqX A sprefix v A vsuffix t) (Z_sinfix_ps)

50

DSTO-TR-2272

Relational operations on sequences

As in Spivey [5, p 120], our definition of sequence makes it a special type of graph, and many previously
discussed operators are applicable to sequences.

#(f os)=#s (Z_seq_rel_comp_zcard)
Vieicl.#s = (fos)i=1fsi (Z_seq_rel_comp_beta)
fo{)y={) (Z_sempty_rel_comp)
f o(x)=(fx) (Z_sunit_rel_comp)
fos t=(os) (fol) (Z_sconcat_rel_comp)
rans={i|i€ 1l.#sesi} (Z_ran_redef)
ran () =@ (Z_sempty_ran)
ran (x) = {x} (Z_sunit_ran)
ran (s~ t)=ran s Uran t (Z_sconcat_ran_union)
rev(fos)=forevs (Z_srev_rel_comp)
(fos)[V=Ffos | {)V) (Z_stilter _rel_comp)
ran(s | V)=ransNV (Z_ran_sfilter_inter)

51

DSTO-TR-2272

Name
~/ - Distributed concatenation
Definition
“/O=0 (sdistrib_sempty)
T/(s)=s (Z_sdistrib_sunit)
/s 0=Cs)" () (Z_sdistrib_sconcat)
Description

Distributed concatenation [5, p 121][2, p 110] is modelled as a type generic operator built
from a recursion operator. The recursion operator allows for partial evaluation of functions
over a sequence.

Laws
/s, ty=s5"t (Z_sdistrib_sinsert_seq)
rev("/q)="/rev (grf rev o q) (Z_srev_sdistrib)
“/qtV="/(\s|seseqXes| V)oq) (Z_sdistrib_sfilter)
fo /q="/(hs|seseq X efos)oq) (Z_sdistrib_rel_comp)
ran ("/q)=(J i|i€ l.#q eran (g-i)) = |Jran (grf ran o q) (Z_sdistrib_ran)

52

DSTO-TR-2272

Name
disjoint - Disjointness
partition - Partitions
Definition
disjoint S=V ijei,jedomSAi#j=SiNSj=02 (Z_Disjoint_def)
S partition T = disjoint SA(|J i |[iedom Se S:i)=T (Z_zpartition_def)
Description

We define type generic operators for disjoint and partition [5, p 122]. The disjoint operator
was defined in HOL, we have simply provided an alternate definition more in keeping with

the Z definition.
Laws
disjoint @ (Z_Disjoint_empty)
disjoint (x) (Z_Disjoint_sunit)
disjoint (A, By ANB=0 (Z_Disjoint_sinsert)
(A,B)partition C& ANB=2AAUB=C (Z_partition_sinsert)

53

DSTO-TR-2272

54

Induction

We provide three induction methods for sequences [5, p 123]. The first involves an insertion at the head
of a sequence, the second involves an insertion at the end of the sequence and the third involves the
concatenation of two sequences.

seq_induct:

[seseq X;P(); ANxsxe[[xseseq X;x€X;Pxs][FP ({x) " xs)[FPs

seq_rev_induct:

[seseq X;P(); ANxsxe[[xseseq X;x€X;Pxs][FP (xs (x)]|FPs

seq_sconcat_induct:

[seseq X;P(); ANxexeX FP(x); AN\ste[[seseqX;teseqX;Ps;Pt]rP (s t)]+Ps

DSTO-TR-2272

3.7 Bags
Name
bag - Bags
- Multiplicity
® - Bagscaling
binsert - Bag insertion
Il - Empty bag
Definition
bag X = X » N (bag_def)
bix=(Axe0)db)x (Z_bhash_def)
(n®b)x=n*xbfdx (Z_bscale_def)
binsertxb=b @ {(x, b x + 1)} (binsert_def)
=2 (bempty_def)
Notation
We write [xq, X1, ..., X,]] for binsert xo [X1, ..., X,l.
Description

Bags are collections that may be distinguished by the number of occurrrences of a member.
This makes them essentially natural number valued functions. Spivey [5, p. 124] introduces
bags as non-zero valued functions from a specified range set to the natural numbers.

Laws
domb={x|bf#xeN;} (Z_dom_bhash)
n®[]l=0”b=1]] (Z_bscale_bempty_zero)
I1®b=0>b (Z_unit_scale)
(n+m)®b=n®m®eb (Z_dist_scale)

55

DSTO-TR-2272

Name

E - Bagmembership
E - Sub-bag relation

Definition

XEB=xedomB (Z_inbag_det)
BCLC=V xexeX =><(Bf#x)(Clx) (Z_bag_le_def)

Description

The bag membership operator [5, p. 125] determines the frequency of a particular element
is non-zero.

The sub-bag operator [5, p. 125] is the point-wise lift of the natural number order.

Laws
XEbe <0(bix) (Z_inbag_bhash)
bCc¢c = domb Cdomc (Z_bag_le_dom)
[IEb (Z_bempty_bag_le)
bCb (Z_bag_self_le)
bCcAcCb=b=c (Z_bag_le_eq)
bCcAcCd=bCd (Z_bag_le_trans)

56

DSTO-TR-2272

Name
w - Bagunion
o - Bagdifference
Definition
(bwoytx=bfix+clx (Z_bunion_def)
(buc)fx=if <(c#x)(bfix) thenbfix—cfx elseOfi (Z_bdiff_def)
Description

Bag union and bag difference [5, p. 126] can be defined in terms of arithmetic on the counts.

Laws
dom (b W ¢) =dom b U dom ¢ (Z_bunion_dom)
[Teb=bw]]l=b (Z_bunion_empty)
bWwc=cWb (Z_bunion_commute)
bywcwd=bW(cwd) (Z_bunion_assoc)
[ITeb=[1AbYI]]=b (Z_bdift_empty)
bwcdc=b (Z_bunion_inverse)
(n+m)®b=n®bw(me®b) (Z_bscale_union)
<mn=>Mn-m®e®b=n®buY(meb) (Z_bscale_diff)
n®bwWc=n®bW(n®c) (Z_bunion_distr)
n®bYdc=n®bd(n®c) (Z_bdiff_distr)

57

DSTO-TR-2272

Name

items - Bag of elements of a sequence
Definition

(items) f x =#{i|iedoms A si=x} (Z_bitems_def)
Description

A bag can be constructed by counting the occurrences of the elements of a list [5, p. 127].

Laws
dom (items s) = ran s (Z_bitems_dom)
items (sinsert x s) = binsert x (items s) (Z_bitems_sinsert)
items (s ~ t) = items s & items ¢ (Z_bitems_concat)

items s=items t & (d fef edoms>»domt As=tof) (Z bitems_permutations)

58

DSTO-TR-2272

References

1. L J. Hayes, editor. Specification Case Studies. Prentice Hall International, second edition, 1993.

2. International Organization for Standardization. Information technology — Z formal specification no-
tation — Syntax, type system and semantics, 2002.

3. B. Mahony, J. McCarthy, K. Williams, and Linh Vu. The HiVe mathematical toolkit, part 2: The Z
mathematical toolkit. To be published as DSTO General Document (~350 pages), May 2008.

4. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. IsabelleHOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

W

. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International, second edition, 1992.

59

Page classification:UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 1. CAVEAT/PRIVACY MARKING
DOCUMENT CONTROL DATA
2. TITLE 3. SECURITY CLASSIFICATION
Z Support in the HI'VE Mathematical Toolkit (U) Document U)
Title ()]
Abstract)
4. AUTHORS 5. CORPORATE AUTHOR

Brendan Mahony, Jim McCarthy, Linh Vu, Kylie | Defence Science and Technology Organisation

Williams PO Box 1500
Edinburgh, South Australia 5111, Australia
6a. DSTO NUMBER 6b. AR NUMBER 6¢c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TR-2272 AR-014-433 Technical Report March, 2009
8. FILE NUMBER 9. TASK NUMBER 10. SPONSOR 11. No OF PAGES 12. No OF REFS
DMO 07/007 DMO 59 5
13. URL OF ELECTRONIC VERSION 14. RELEASE AUTHORITY
http://www.dsto.defence.gov.au/corporate/ Chief, Command, Control, Communications and Intel-
reports/DSTO-TR-2272.pdf ligence Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved For Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

Software engineering
Requirements management
Standards

19. ABSTRACT (U)

The HIVE project is an ambitious research programme aimed at providing DSTO and the Australian Defence
Department with the world’s most advanced assurance tools. A key part of this is the provision of advanced high
assurance analysis tools in the form of the HI'VE Modeller component.

Formal specification and system modelling activities in the HiVE Modeller are supported through an Is-
abelle/HOL implementation of the HIVE Mathematical Toolkit. This report describes support for the Z Mathe-
matical Toolkit within the HI'VE Mathematical Toolkit.

Page classification:UNCLASSIFIED

